{ "id": "1511.08600", "version": "v1", "published": "2015-11-27T10:05:50.000Z", "updated": "2015-11-27T10:05:50.000Z", "title": "Hyperboloidal evolution and global dynamics for the focusing cubic wave equation", "authors": [ "Annegret Y. Burtscher", "Roland Donninger" ], "comment": "39 pages, 6 figures", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "In the framework of a hyperboloidal initial value formulation for the cubic wave equation, we identify a codimension-1 Lipschitz manifold of data leading to solutions which converge to Lorentz boosts of the selfsimilar attractor $\\sqrt{2}/t$. These global solutions thus exhibit a slow nondispersive decay, in contrast to small data evolutions.", "revisions": [ { "version": "v1", "updated": "2015-11-27T10:05:50.000Z" } ], "analyses": { "subjects": [ "35L05", "35L71", "58J45" ], "keywords": [ "focusing cubic wave equation", "hyperboloidal evolution", "global dynamics", "hyperboloidal initial value formulation", "small data evolutions" ], "note": { "typesetting": "TeX", "pages": 39, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151108600B" } } }