arXiv Analytics

Sign in

arXiv:1511.05874 [math.CA]AbstractReferencesReviewsResources

On polynomial configurations in fractal sets

Kevin Henriot, Izabella Laba, Malabika Pramanik

Published 2015-11-18Version 1

We show that subsets of $\mathbb{R}^n$ of large enough Hausdorff and Fourier dimension contain polynomial patterns of the form \begin{align*} ( x ,\, x + A_1 y ,\, \dots,\, x + A_{k-1} y ,\, x + A_k y + Q(y) e_n ), \quad x \in \mathbb{R}^n,\ y \in \mathbb{R}^m, \end{align*} where $A_i$ are real $n \times m$ matrices, $Q$ is a real polynomial in $m$ variables and $e_n = (0,\dots,0,1)$.

Related articles: Most relevant | Search more
arXiv:2205.02770 [math.CA] (Published 2022-05-05)
Additive properties of fractal sets on the parabola
arXiv:1703.03313 [math.CA] (Published 2017-03-09)
On realizability of sign patterns by real polynomials
arXiv:1703.05262 [math.CA] (Published 2017-03-15)
On one class of fractal sets