{ "id": "1511.05874", "version": "v1", "published": "2015-11-18T16:55:03.000Z", "updated": "2015-11-18T16:55:03.000Z", "title": "On polynomial configurations in fractal sets", "authors": [ "Kevin Henriot", "Izabella Laba", "Malabika Pramanik" ], "comment": "38 pages", "categories": [ "math.CA" ], "abstract": "We show that subsets of $\\mathbb{R}^n$ of large enough Hausdorff and Fourier dimension contain polynomial patterns of the form \\begin{align*} ( x ,\\, x + A_1 y ,\\, \\dots,\\, x + A_{k-1} y ,\\, x + A_k y + Q(y) e_n ), \\quad x \\in \\mathbb{R}^n,\\ y \\in \\mathbb{R}^m, \\end{align*} where $A_i$ are real $n \\times m$ matrices, $Q$ is a real polynomial in $m$ variables and $e_n = (0,\\dots,0,1)$.", "revisions": [ { "version": "v1", "updated": "2015-11-18T16:55:03.000Z" } ], "analyses": { "keywords": [ "fractal sets", "polynomial configurations", "fourier dimension contain polynomial patterns", "real polynomial" ], "note": { "typesetting": "TeX", "pages": 38, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151105874H" } } }