arXiv:1510.07289 [math.FA]AbstractReferencesReviewsResources
On Dvoretzky's theorem for subspaces of $L_p$
Grigoris Paouris, Petros Valettas
Published 2015-10-25Version 1
We prove that for any $p > 2$ and every $n$-dimensional subspace $X$ of $L_p$, the Euclidean space $\ell_2^k$ can be $(1 + \varepsilon)$-embedded into $X$ with $k \geq c_p \min\{\varepsilon^2 n, (\varepsilon n)^{2/p} \}$, where $c_p > 0$ is a constant depending only on $p$.
Comments: 20 pages
Keywords: dvoretzkys theorem, dimensional subspace
Related articles: Most relevant | Search more
arXiv:1510.07284 [math.FA] (Published 2015-10-25)
Random version of Dvoretzky's theorem in $\ell_p^n$
arXiv:1707.04442 [math.FA] (Published 2017-07-14)
On the volume of the John-Löwner ellipsoid
arXiv:1707.04414 [math.FA] (Published 2017-07-14)
A formula for $g$-angle between two subspaces of a normed space