{ "id": "1510.07289", "version": "v1", "published": "2015-10-25T19:06:21.000Z", "updated": "2015-10-25T19:06:21.000Z", "title": "On Dvoretzky's theorem for subspaces of $L_p$", "authors": [ "Grigoris Paouris", "Petros Valettas" ], "comment": "20 pages", "categories": [ "math.FA", "math.MG" ], "abstract": "We prove that for any $p > 2$ and every $n$-dimensional subspace $X$ of $L_p$, the Euclidean space $\\ell_2^k$ can be $(1 + \\varepsilon)$-embedded into $X$ with $k \\geq c_p \\min\\{\\varepsilon^2 n, (\\varepsilon n)^{2/p} \\}$, where $c_p > 0$ is a constant depending only on $p$.", "revisions": [ { "version": "v1", "updated": "2015-10-25T19:06:21.000Z" } ], "analyses": { "subjects": [ "46B07", "46B09" ], "keywords": [ "dvoretzkys theorem", "dimensional subspace" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151007289P" } } }