arXiv:1510.05579 [math.NT]AbstractReferencesReviewsResources
Another generalization of a theorem of Baker and Davenport
Bo He, Ákos Pintér, Alain Togbe, Shichun Yang
Published 2015-10-19Version 1
Dujella and Peth\H{o}, generalizing a result of Baker and Davenport, proved that the set $\{1, 3\}$ cannot be extended to a Diophantine quintuple. As a consequence of our main result, it is shown that the Diophantine pair $\{1, b\}$ cannot be extended to a Diophantine quintuple if $b-1$ is a prime or a prime power.
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1312.5241 [math.NT] (Published 2013-12-18)
Non-extensibility of the pair $\{1, 3\}$ to a Diophantine quintuple in $\mathbb{Z}\left[\sqrt{-d}\right]$
arXiv:1610.04020 [math.NT] (Published 2016-10-13)
There is no Diophantine quintuple
arXiv:1511.08043 [math.NT] (Published 2015-11-25)
Generalizations on a Problem of Saffari