arXiv:1312.5241 [math.NT]AbstractReferencesReviewsResources
Non-extensibility of the pair $\{1, 3\}$ to a Diophantine quintuple in $\mathbb{Z}\left[\sqrt{-d}\right]$
Published 2013-12-18Version 1
We show that the Diophantine pair $\{1, 3\}$ can not be extended to a Diophantine quintuple in $\mathbb{Z}\left[\sqrt{-2}\right]$. This result completes the work of the first author and establishes non-extensibility of the Diophantine pair $\{1, 3\}$ to a Diophantine quintuple in $\mathbb{Z}\left[\sqrt{-d}\right]$ for all $d\in \mathbb{N}$.
Journal: Journal of Combinatorics and Number Theory, Volume 3, (2011), 1--15
Categories: math.NT
Tags: journal article
Related articles: Most relevant | Search more
Lehmer without Bogomolov
arXiv:1610.04020 [math.NT] (Published 2016-10-13)
There is no Diophantine quintuple
arXiv:1609.08602 [math.NT] (Published 2016-09-27)
On the number of factorizations of an integer