arXiv:1510.01285 [math.CA]AbstractReferencesReviewsResources
On the zeros of Confluent Hypergeometric Functions
Published 2015-10-05Version 1
In this paper, we study the zero sets of the confluent hypergeometric function $_{1}F_{1}(\alpha;\gamma;z):=\sum_{n=0}^{\infty}\frac{(\alpha)_{n}}{n!(\gamma)_{n}}z^{n}$, where $\alpha, \gamma, \gamma-\alpha\not\in \mathbb{Z}_{\leq 0}$, and show that if $\{z_n\}_{n=1}^{\infty}$ is the zero set of $_{1}F_{1}(\alpha;\gamma;z)$ with multiple zeros repeated and modulus in increasing order, then there exists a constant $M>0$ such that $|z_n|\geq M n$ for all $n\geq 1$.
Related articles: Most relevant | Search more
arXiv:1712.08371 [math.CA] (Published 2017-12-22)
The expansion of the confluent hypergeometric function on the positive real axis
arXiv:1702.08438 [math.CA] (Published 2017-02-25)
Evaluation of the non-elementary integral $\int e^{λx^α} dx, α\ge2$, and related integrals
arXiv:1703.08852 [math.CA] (Published 2017-03-26)
Inequalities of Extended (p,q)-beta and confluent hypergeometric function