{ "id": "1510.01285", "version": "v1", "published": "2015-10-05T19:06:57.000Z", "updated": "2015-10-05T19:06:57.000Z", "title": "On the zeros of Confluent Hypergeometric Functions", "authors": [ "Wei-Chuan Lin", "Xu-Dan Luo" ], "categories": [ "math.CA", "math-ph", "math.CV", "math.MP" ], "abstract": "In this paper, we study the zero sets of the confluent hypergeometric function $_{1}F_{1}(\\alpha;\\gamma;z):=\\sum_{n=0}^{\\infty}\\frac{(\\alpha)_{n}}{n!(\\gamma)_{n}}z^{n}$, where $\\alpha, \\gamma, \\gamma-\\alpha\\not\\in \\mathbb{Z}_{\\leq 0}$, and show that if $\\{z_n\\}_{n=1}^{\\infty}$ is the zero set of $_{1}F_{1}(\\alpha;\\gamma;z)$ with multiple zeros repeated and modulus in increasing order, then there exists a constant $M>0$ such that $|z_n|\\geq M n$ for all $n\\geq 1$.", "revisions": [ { "version": "v1", "updated": "2015-10-05T19:06:57.000Z" } ], "analyses": { "subjects": [ "33C15", "30D30", "30D35" ], "keywords": [ "confluent hypergeometric function", "zero set", "multiple zeros", "increasing order" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }