arXiv Analytics

Sign in

arXiv:1509.03904 [math.OC]AbstractReferencesReviewsResources

A general class of spreading processes with non-Markovian dynamics

Cameron Nowzari, Masaki Ogura, Victor M. Preciado, George J. Pappas

Published 2015-09-13Version 1

In this paper we propose a general class of models for spreading processes we call the $SI^*V^*$ model. Unlike many works that consider a fixed number of compartmental states, we allow an arbitrary number of states on arbitrary graphs with heterogeneous parameters for all nodes and edges. As a result, this generalizes an extremely large number of models studied in the literature including the MSEIV, MSEIR, MSEIS, SEIV, SEIR, SEIS, SIV, SIRS, SIR, and SIS models. Furthermore, we show how the $SI^*V^*$ model allows us to model non-Poisson spreading processes letting us capture much more complicated dynamics than existing works such as information spreading through social networks or the delayed incubation period of a disease like Ebola. This is in contrast to the overwhelming majority of works in the literature that only consider spreading processes that can be captured by a Markov process. After developing the stochastic model, we analyze its deterministic mean-field approximation and provide conditions for when the disease-free equilibrium is stable. Simulations illustrate our results.

Related articles: Most relevant | Search more
arXiv:1403.3444 [math.OC] (Published 2014-03-13)
Observer Design for a General Class of Nonlinear Systems
arXiv:1603.00940 [math.OC] (Published 2016-03-03)
Regularity for Free Interface Variational Problems in a General Class of Gradients
arXiv:2109.10076 [math.OC] (Published 2021-09-21)
An Approximation Algorithm for a General Class of Multi-Parametric Optimization Problems