arXiv Analytics

Sign in

arXiv:1509.01441 [math.RT]AbstractReferencesReviewsResources

Simple transitive $2$-representations of Soergel bimodules in type $B_2$

Jakob Zimmermann

Published 2015-09-04Version 1

We prove that every simple transitive $2$-representation of the fiat $2$-category of Soergel bimodules (over the coinvariant algebra) in type $B_2$ is equivalent to a cell $2$-representation. We also describe some general properties of the $2$-category of Soergel bimodules for arbitrary finite Dihedral groups.

Related articles: Most relevant | Search more
arXiv:1602.04314 [math.RT] (Published 2016-02-13)
Simple transitive 2-representations for some 2-subcategories of Soergel bimodules
arXiv:1611.05334 [math.RT] (Published 2016-11-15)
Reconstruction from Representations: Jacobi via Cohomology
arXiv:1908.10157 [math.RT] (Published 2019-08-27)
On complexity of representations of quivers