{ "id": "1509.01441", "version": "v1", "published": "2015-09-04T13:38:29.000Z", "updated": "2015-09-04T13:38:29.000Z", "title": "Simple transitive $2$-representations of Soergel bimodules in type $B_2$", "authors": [ "Jakob Zimmermann" ], "categories": [ "math.RT" ], "abstract": "We prove that every simple transitive $2$-representation of the fiat $2$-category of Soergel bimodules (over the coinvariant algebra) in type $B_2$ is equivalent to a cell $2$-representation. We also describe some general properties of the $2$-category of Soergel bimodules for arbitrary finite Dihedral groups.", "revisions": [ { "version": "v1", "updated": "2015-09-04T13:38:29.000Z" } ], "analyses": { "keywords": [ "soergel bimodules", "simple transitive", "representation", "arbitrary finite dihedral groups", "general properties" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150901441Z" } } }