arXiv:1508.07150 [math.AP]AbstractReferencesReviewsResources
Schrödinger Operators With $A_\infty$ Potentials
Published 2015-08-28Version 1
We study the heat kernel $p(x,y,t)$ associated to the real Schr\"odinger operator $H = -\Delta + V$ on $L^2(\mathbb{R}^n)$, $n \geq 1$. Our main result is a pointwise upper bound on $p$ when the potential $V \in A_\infty$. In the case that $V\in RH_\infty$, we also prove a lower bound. Additionally, we compute $p$ explicitly when $V$ is a quadratic polynomial.
Comments: 15 pages. Comments welcome!
Related articles: Most relevant | Search more
arXiv:2308.04174 [math.AP] (Published 2023-08-08)
The parametrix construction of the heat kernel on a graph
On gradient estimates for the heat kernel
arXiv:2103.10181 [math.AP] (Published 2021-03-18)
Gradient Estimate for the Heat Kernel on the Sierpiński Cable System