{ "id": "1508.07150", "version": "v1", "published": "2015-08-28T09:44:52.000Z", "updated": "2015-08-28T09:44:52.000Z", "title": "Schrödinger Operators With $A_\\infty$ Potentials", "authors": [ "Andrew Raich", "Michael Tinker" ], "comment": "15 pages. Comments welcome!", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "We study the heat kernel $p(x,y,t)$ associated to the real Schr\\\"odinger operator $H = -\\Delta + V$ on $L^2(\\mathbb{R}^n)$, $n \\geq 1$. Our main result is a pointwise upper bound on $p$ when the potential $V \\in A_\\infty$. In the case that $V\\in RH_\\infty$, we also prove a lower bound. Additionally, we compute $p$ explicitly when $V$ is a quadratic polynomial.", "revisions": [ { "version": "v1", "updated": "2015-08-28T09:44:52.000Z" } ], "analyses": { "subjects": [ "35K08", "35J10", "32W30" ], "keywords": [ "schrödinger operators", "quadratic polynomial", "heat kernel", "main result", "lower bound" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150807150R" } } }