arXiv:1508.05644 [math.NT]AbstractReferencesReviewsResources
The class number one problem for the real quadratic fields $\mathbb{Q}\left(\sqrt{(an)^2+4a}\right)$
András Biró, Kostadinka Lapkova
Published 2015-08-23Version 1
We solve unconditionally the class number one problem for the $2$-parameter family of real quadratic fields $\mathbb{Q}(\sqrt{d})$ with square-free discriminant $d=(an)^2+4a$ for positive odd integers $a$ and $n$.
Comments: 16 pages
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:2008.03505 [math.NT] (Published 2020-08-08)
Class number one problem for the real quadratic fields $\mathbb{Q}({\sqrt{m^2+2r}})$
arXiv:1603.00889 [math.NT] (Published 2016-03-02)
The distribution of class numbers in a special family of real quadratic fields
arXiv:1205.0371 [math.NT] (Published 2012-05-02)
Mersenne Primes in Real Quadratic Fields