{ "id": "1508.05644", "version": "v1", "published": "2015-08-23T18:52:38.000Z", "updated": "2015-08-23T18:52:38.000Z", "title": "The class number one problem for the real quadratic fields $\\mathbb{Q}\\left(\\sqrt{(an)^2+4a}\\right)$", "authors": [ "András Biró", "Kostadinka Lapkova" ], "comment": "16 pages", "categories": [ "math.NT" ], "abstract": "We solve unconditionally the class number one problem for the $2$-parameter family of real quadratic fields $\\mathbb{Q}(\\sqrt{d})$ with square-free discriminant $d=(an)^2+4a$ for positive odd integers $a$ and $n$.", "revisions": [ { "version": "v1", "updated": "2015-08-23T18:52:38.000Z" } ], "analyses": { "keywords": [ "real quadratic fields", "class number", "square-free discriminant", "positive odd integers" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150805644B" } } }