arXiv Analytics

Sign in

arXiv:1508.02691 [math.CO]AbstractReferencesReviewsResources

Pairs of dot products in finite fields and rings

David Covert, Steven Senger

Published 2015-08-11Version 1

We obtain bounds on the number of triples that determine a given pair of dot products arising in a vector space over a finite field or a module over the set of integers modulo a power of a prime. More precisely, given $E\subset \mathbb F_q^d$ or $\mathbb Z_q^d$, we provide bounds on the size of the set \[\left\{(u,v,w)\in E \times E \times E : u\cdot v = \alpha, u \cdot w = \beta \right\}\] for units $\alpha$ and $\beta$.

Related articles: Most relevant | Search more
arXiv:0804.3074 [math.CO] (Published 2008-04-18, updated 2009-06-16)
(q,t)-analogues and GL_n(F_q)
arXiv:0903.2510 [math.CO] (Published 2009-03-13)
On the volume set of point sets in vector spaces over finite fields
arXiv:1106.1148 [math.CO] (Published 2011-05-31)
An improved sum-product estimate over finite fields