{ "id": "1508.02691", "version": "v1", "published": "2015-08-11T19:03:38.000Z", "updated": "2015-08-11T19:03:38.000Z", "title": "Pairs of dot products in finite fields and rings", "authors": [ "David Covert", "Steven Senger" ], "categories": [ "math.CO" ], "abstract": "We obtain bounds on the number of triples that determine a given pair of dot products arising in a vector space over a finite field or a module over the set of integers modulo a power of a prime. More precisely, given $E\\subset \\mathbb F_q^d$ or $\\mathbb Z_q^d$, we provide bounds on the size of the set \\[\\left\\{(u,v,w)\\in E \\times E \\times E : u\\cdot v = \\alpha, u \\cdot w = \\beta \\right\\}\\] for units $\\alpha$ and $\\beta$.", "revisions": [ { "version": "v1", "updated": "2015-08-11T19:03:38.000Z" } ], "analyses": { "keywords": [ "finite field", "vector space", "integers modulo", "dot products arising" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150802691C" } } }