arXiv Analytics

Sign in

arXiv:1507.08854 [math.FA]AbstractReferencesReviewsResources

Some $s$-numbers of an integral operator of Hardy type in Banach function spaces

David Edmunds, Amiran Gogatishvili, Tengiz Kopaliani, Nino Samashvili

Published 2015-07-31Version 1

Let $s_{n}(T)$ denote the $n$th approximation, isomorphism, Gelfand, Kolmogorov or Bernstein number of the Hardy-type integral operator $T$ given by $$ Tf(x)=v(x)\int_{a}^{x}u(t)f(t)dt,\,\,\,x\in(a,b)\,\,(-\infty<a<b<+\infty) $$ and mapping a Banach function space $E$ to itself. We investigate some geometrical properties of $E$ for which $$ C_{1}\int_{a}^{b}u(x)v(x)dx \leq\limsup\limits_{n\rightarrow\infty}ns_{n}(T) \leq \limsup\limits_{n\rightarrow\infty}ns_{n}(T)\leq C_{2}\int_{a}^{b}u(x)v(x)dx $$ under appropriate conditions on $u$ and $v.$ The constants $C_{1},C_{2}>0$ depend only on the space $E.$

Related articles: Most relevant | Search more
arXiv:1808.06747 [math.FA] (Published 2018-08-21)
On closedness of convex sets in Banach function spaces
arXiv:2401.15373 [math.FA] (Published 2024-01-27)
Compactness of averaging operators on Banach function spaces
arXiv:2109.11025 [math.FA] (Published 2021-09-22)
Spaceability on some classes of Banach spaces