{ "id": "1507.08854", "version": "v1", "published": "2015-07-31T12:29:50.000Z", "updated": "2015-07-31T12:29:50.000Z", "title": "Some $s$-numbers of an integral operator of Hardy type in Banach function spaces", "authors": [ "David Edmunds", "Amiran Gogatishvili", "Tengiz Kopaliani", "Nino Samashvili" ], "categories": [ "math.FA", "math.AP", "math.CA" ], "abstract": "Let $s_{n}(T)$ denote the $n$th approximation, isomorphism, Gelfand, Kolmogorov or Bernstein number of the Hardy-type integral operator $T$ given by $$ Tf(x)=v(x)\\int_{a}^{x}u(t)f(t)dt,\\,\\,\\,x\\in(a,b)\\,\\,(-\\infty0$ depend only on the space $E.$", "revisions": [ { "version": "v1", "updated": "2015-07-31T12:29:50.000Z" } ], "analyses": { "subjects": [ "35P30", "46E30", "46E35", "47A75", "47B06", "47B10", "47B40", "47G10" ], "keywords": [ "banach function space", "hardy type", "hardy-type integral operator", "bernstein number", "th approximation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150708854E" } } }