arXiv:1506.08792 [math.RT]AbstractReferencesReviewsResources
Bases for the Global Weyl modules of $\mathfrak{sl}_n$ of highest weight $mω_1$
Samuel Chamberlin, Amanda Croan
Published 2015-06-29Version 1
We utilize a theorem of B. Feigin and S. Loktev to give explicit bases for the global Weyl modules for the map algebras of the form $\mathfrak{sl}_n\otimes A$ of highest weight $m\omega_1$. These bases are given in terms of specific elements of the universal enveloping algebra, $\mathbf{U}(\mathfrak{sl}_n\otimes A)$, acting on the highest weight vector.
Categories: math.RT
Related articles: Most relevant | Search more
Centers of universal enveloping algebras of Lie superalgebras in prime characteristic
arXiv:2405.08325 [math.RT] (Published 2024-05-14)
Centers of Universal Enveloping Algebras
arXiv:2307.15952 [math.RT] (Published 2023-07-29)
The argument shift method in universal enveloping algebra $U\mathfrak{gl}_d$