{ "id": "1506.08792", "version": "v1", "published": "2015-06-29T19:26:49.000Z", "updated": "2015-06-29T19:26:49.000Z", "title": "Bases for the Global Weyl modules of $\\mathfrak{sl}_n$ of highest weight $mω_1$", "authors": [ "Samuel Chamberlin", "Amanda Croan" ], "categories": [ "math.RT" ], "abstract": "We utilize a theorem of B. Feigin and S. Loktev to give explicit bases for the global Weyl modules for the map algebras of the form $\\mathfrak{sl}_n\\otimes A$ of highest weight $m\\omega_1$. These bases are given in terms of specific elements of the universal enveloping algebra, $\\mathbf{U}(\\mathfrak{sl}_n\\otimes A)$, acting on the highest weight vector.", "revisions": [ { "version": "v1", "updated": "2015-06-29T19:26:49.000Z" } ], "analyses": { "keywords": [ "global weyl modules", "highest weight vector", "explicit bases", "universal enveloping algebra", "specific elements" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150608792C" } } }