arXiv:1506.08041 [math.AP]AbstractReferencesReviewsResources
On ratios of harmonic functions II
Alexander Logunov, Eugenia Malinnikova
Published 2015-06-26Version 1
We study the ratio of harmonic functions $u,v$ which have the same zero set $Z$ in the unit ball $B\subset \mathbb{R}^n$. The ratio $f=u/v$ can be extended to a real analytic, nowhere vanishing function in $B$. We prove the Harnack inequality and the gradient estimate for such ratios: for a given compact set $K\subset B$ we show that $\sup_K|f|\le C_1\inf_K|f|$ and $\sup_K\left|\nabla f\right|\le C_2 \inf_K|f|$, where $C_1$ and $C_2$ depend only on $K,Z$. In dimension two we specify these estimates by showing that only the number of nodal domains of $u$ plays a role.
Related articles: Most relevant | Search more
arXiv:1102.3995 [math.AP] (Published 2011-02-19)
Optimal estimates for harmonic functions in the unit ball
arXiv:2004.08894 [math.AP] (Published 2020-04-19)
Schwarz-Pick lemma for harmonic functions
On ratios of harmonic functions