{ "id": "1506.08041", "version": "v1", "published": "2015-06-26T12:07:44.000Z", "updated": "2015-06-26T12:07:44.000Z", "title": "On ratios of harmonic functions II", "authors": [ "Alexander Logunov", "Eugenia Malinnikova" ], "categories": [ "math.AP", "math.CA" ], "abstract": "We study the ratio of harmonic functions $u,v$ which have the same zero set $Z$ in the unit ball $B\\subset \\mathbb{R}^n$. The ratio $f=u/v$ can be extended to a real analytic, nowhere vanishing function in $B$. We prove the Harnack inequality and the gradient estimate for such ratios: for a given compact set $K\\subset B$ we show that $\\sup_K|f|\\le C_1\\inf_K|f|$ and $\\sup_K\\left|\\nabla f\\right|\\le C_2 \\inf_K|f|$, where $C_1$ and $C_2$ depend only on $K,Z$. In dimension two we specify these estimates by showing that only the number of nodal domains of $u$ plays a role.", "revisions": [ { "version": "v1", "updated": "2015-06-26T12:07:44.000Z" } ], "analyses": { "keywords": [ "harmonic functions", "unit ball", "real analytic", "zero set", "harnack inequality" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }