arXiv Analytics

Sign in

arXiv:1505.02490 [math.AP]AbstractReferencesReviewsResources

Boundary blow-up solutions to fractional elliptic equations in a measure framework

Huyuan Chen, Hichem Hajaiej, Ying Wang

Published 2015-05-11Version 1

Let $\alpha\in(0,1)$, $\Omega$ be a bounded open domain in $R^N$ ($N\ge 2$) with $C^2$ boundary $\partial\Omega$ and $\omega$ be the Hausdorff measure on $\partial\Omega$. We denote by $\frac{\partial^\alpha \omega}{\partial \vec{n}^\alpha}$ a measure $$\langle\frac{\partial^\alpha \omega}{\partial \vec{n}^\alpha},f\rangle=\int_{\partial\Omega}\frac{\partial^\alpha f(x)}{\partial \vec{n}_x^\alpha} d\omega(x),\quad f\in C^1(\bar\Omega),$$ where $\vec{n}_x$ is the unit outward normal vector at point $x\in\partial\Omega$. In this paper, we prove that problem $$ \begin{array}{lll} (-\Delta)^\alpha u+g(u)=k\frac{\partial^\alpha \omega}{\partial \vec{n}^\alpha}\quad & {\rm in}\quad \bar\Omega,\\[2mm] \phantom{(-\Delta)^\alpha +g(u)} u=0\quad & {\rm in}\quad \Omega^c \end{array} $$ admits a unique weak solution $u_k$ under the hypotheses that $k>0$, $(-\Delta)^\alpha$ denotes the fractional Laplacian with $\alpha\in(0,1)$ and $g$ is a nondecreasing function satisfying extra conditions. We prove that the weak solution is a classical solution of $$ \begin{array}{lll} \ \ \ (-\Delta)^\alpha u+g(u)=0\quad & {\rm in}\quad \Omega,\\[2mm] \phantom{------\} \ u=0\quad & {\rm in}\quad R^N\setminus\bar\Omega,\\[2mm] \phantom{} \lim_{x\in\Omega,x\to\partial\Omega}u(x)=+\infty. \end{array} $$

Comments: 25 pages. arXiv admin note: text overlap with arXiv:1410.2672
Categories: math.AP
Related articles: Most relevant | Search more
arXiv:1604.07755 [math.AP] (Published 2016-04-26)
On fractional elliptic equations in Lipschitz sets and epigraphs: regularity, monotonicity and rigidity results
arXiv:0901.4324 [math.AP] (Published 2009-01-27, updated 2009-03-19)
Boundary blow-up solutions in the unit ball : asymptotics, uniqueness and symmetry
arXiv:1602.02869 [math.AP] (Published 2016-02-09)
Boundary blow-up solutions of elliptic equations involving regional fractional Laplacian