{ "id": "1505.02490", "version": "v1", "published": "2015-05-11T05:44:04.000Z", "updated": "2015-05-11T05:44:04.000Z", "title": "Boundary blow-up solutions to fractional elliptic equations in a measure framework", "authors": [ "Huyuan Chen", "Hichem Hajaiej", "Ying Wang" ], "comment": "25 pages. arXiv admin note: text overlap with arXiv:1410.2672", "categories": [ "math.AP" ], "abstract": "Let $\\alpha\\in(0,1)$, $\\Omega$ be a bounded open domain in $R^N$ ($N\\ge 2$) with $C^2$ boundary $\\partial\\Omega$ and $\\omega$ be the Hausdorff measure on $\\partial\\Omega$. We denote by $\\frac{\\partial^\\alpha \\omega}{\\partial \\vec{n}^\\alpha}$ a measure $$\\langle\\frac{\\partial^\\alpha \\omega}{\\partial \\vec{n}^\\alpha},f\\rangle=\\int_{\\partial\\Omega}\\frac{\\partial^\\alpha f(x)}{\\partial \\vec{n}_x^\\alpha} d\\omega(x),\\quad f\\in C^1(\\bar\\Omega),$$ where $\\vec{n}_x$ is the unit outward normal vector at point $x\\in\\partial\\Omega$. In this paper, we prove that problem $$ \\begin{array}{lll} (-\\Delta)^\\alpha u+g(u)=k\\frac{\\partial^\\alpha \\omega}{\\partial \\vec{n}^\\alpha}\\quad & {\\rm in}\\quad \\bar\\Omega,\\\\[2mm] \\phantom{(-\\Delta)^\\alpha +g(u)} u=0\\quad & {\\rm in}\\quad \\Omega^c \\end{array} $$ admits a unique weak solution $u_k$ under the hypotheses that $k>0$, $(-\\Delta)^\\alpha$ denotes the fractional Laplacian with $\\alpha\\in(0,1)$ and $g$ is a nondecreasing function satisfying extra conditions. We prove that the weak solution is a classical solution of $$ \\begin{array}{lll} \\ \\ \\ (-\\Delta)^\\alpha u+g(u)=0\\quad & {\\rm in}\\quad \\Omega,\\\\[2mm] \\phantom{------\\} \\ u=0\\quad & {\\rm in}\\quad R^N\\setminus\\bar\\Omega,\\\\[2mm] \\phantom{} \\lim_{x\\in\\Omega,x\\to\\partial\\Omega}u(x)=+\\infty. \\end{array} $$", "revisions": [ { "version": "v1", "updated": "2015-05-11T05:44:04.000Z" } ], "analyses": { "keywords": [ "fractional elliptic equations", "boundary blow-up solutions", "measure framework", "unit outward normal vector", "nondecreasing function satisfying extra conditions" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150502490C" } } }