arXiv Analytics

Sign in

arXiv:1504.08282 [math.RT]AbstractReferencesReviewsResources

Approximations of injective modules and finitistic dimension

François Huard, David Smith

Published 2015-04-30Version 1

Let $\Lambda$ be an artin algebra and let $\mathcal{P}^{<\infty}_\Lambda$ the category of finitely generated right $\Lambda$-modules of finite projective dimension. We show that $\mathcal{P}^{<\infty}_\Lambda$ is contravariantly finite in $\rm mod\,\Lambda$ if and only if the direct sum $E$ of the indecomposable Ext-injective modules in $\mathcal{P}^{<\infty}_\Lambda$ form a tilting module in $\rm mod\,\Lambda$. Moreover, we show that in this case $E$ coincides with the direct sum of the minimal right $\mathcal{P}^{<\infty}_\Lambda$-approximations of the indecomposable $\Lambda$-injective modules and that the projective dimension of $E$ equal to the finitistic dimension of $\Lambda$.

Related articles: Most relevant | Search more
arXiv:2008.10044 [math.RT] (Published 2020-08-23)
The finitistic dimension of a Nakayama algebra
arXiv:1110.6734 [math.RT] (Published 2011-10-31, updated 2012-02-28)
Morphisms determined by objects: The case of modules over artin algebras
arXiv:1407.2387 [math.RT] (Published 2014-07-09)
Analyzing the Structure of Representations via Approximations