{ "id": "1504.08282", "version": "v1", "published": "2015-04-30T15:54:17.000Z", "updated": "2015-04-30T15:54:17.000Z", "title": "Approximations of injective modules and finitistic dimension", "authors": [ "François Huard", "David Smith" ], "comment": "4 pages", "categories": [ "math.RT" ], "abstract": "Let $\\Lambda$ be an artin algebra and let $\\mathcal{P}^{<\\infty}_\\Lambda$ the category of finitely generated right $\\Lambda$-modules of finite projective dimension. We show that $\\mathcal{P}^{<\\infty}_\\Lambda$ is contravariantly finite in $\\rm mod\\,\\Lambda$ if and only if the direct sum $E$ of the indecomposable Ext-injective modules in $\\mathcal{P}^{<\\infty}_\\Lambda$ form a tilting module in $\\rm mod\\,\\Lambda$. Moreover, we show that in this case $E$ coincides with the direct sum of the minimal right $\\mathcal{P}^{<\\infty}_\\Lambda$-approximations of the indecomposable $\\Lambda$-injective modules and that the projective dimension of $E$ equal to the finitistic dimension of $\\Lambda$.", "revisions": [ { "version": "v1", "updated": "2015-04-30T15:54:17.000Z" } ], "analyses": { "subjects": [ "16G10" ], "keywords": [ "finitistic dimension", "approximations", "direct sum", "finite projective dimension", "artin algebra" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150408282H" } } }