arXiv:1504.06549 [math.PR]AbstractReferencesReviewsResources
A remark on monotonicity in Bernoulli bond Percolation
Bernardo N. B. de Lima, Aldo Procacci, Rémy Sanchis
Published 2015-04-24Version 1
Consider an anisotropic independent bond percolation model on the $d$-dimensional hypercubic lattice, $d\geq 2$, with parameter $p$. We show that the two point connectivity function $P_{p}(\{(0,\dots,0)\leftrightarrow (n,0,\dots,0)\})$ is a monotone function in $n$ when the parameter $p$ is close enough to 0. Analogously, we show that truncated connectivity function $P_{p}(\{(0,\dots,0)\leftrightarrow (n,0,\dots,0), (0,\dots,0)\nleftrightarrow\infty\})$ is also a monotone function in $n$ when $p$ is close to 1.
Comments: 6 pages
Categories: math.PR
Related articles: Most relevant | Search more
On the Ornstein-Zernike behaviour for the Bernoulli bond percolation on $\mathbb{Z}^{d},d\geq3,$ in the supercitical regime
arXiv:2403.04108 [math.PR] (Published 2024-03-06)
Monotonicity of Recurrence in Random Walks
arXiv:1704.02496 [math.PR] (Published 2017-04-08)
Monotonicity of expected $f$-vectors for projections of regular polytopes