{ "id": "1504.06549", "version": "v1", "published": "2015-04-24T16:03:15.000Z", "updated": "2015-04-24T16:03:15.000Z", "title": "A remark on monotonicity in Bernoulli bond Percolation", "authors": [ "Bernardo N. B. de Lima", "Aldo Procacci", "Rémy Sanchis" ], "comment": "6 pages", "categories": [ "math.PR" ], "abstract": "Consider an anisotropic independent bond percolation model on the $d$-dimensional hypercubic lattice, $d\\geq 2$, with parameter $p$. We show that the two point connectivity function $P_{p}(\\{(0,\\dots,0)\\leftrightarrow (n,0,\\dots,0)\\})$ is a monotone function in $n$ when the parameter $p$ is close enough to 0. Analogously, we show that truncated connectivity function $P_{p}(\\{(0,\\dots,0)\\leftrightarrow (n,0,\\dots,0), (0,\\dots,0)\\nleftrightarrow\\infty\\})$ is also a monotone function in $n$ when $p$ is close to 1.", "revisions": [ { "version": "v1", "updated": "2015-04-24T16:03:15.000Z" } ], "analyses": { "subjects": [ "82B20", "82B41", "82B43" ], "keywords": [ "bernoulli bond percolation", "anisotropic independent bond percolation model", "monotonicity", "monotone function", "dimensional hypercubic lattice" ], "publication": { "doi": "10.1007/s10955-015-1284-z", "journal": "Journal of Statistical Physics", "year": 2015, "month": "Sep", "volume": 160, "number": 5, "pages": 1244 }, "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015JSP...160.1244D" } } }