arXiv:1504.00968 [math.AP]AbstractReferencesReviewsResources
Hardy and Hardy-Sobolev inequalities on Riemannian manifolds
Published 2015-04-04Version 1
Let $ (M,g) $ be a smooth compact Riemannian manifold of dimension $ N \geq 3 $ without boundary. Given $p_0 \in M$, $\lambda \in \mathcal{R}$ and $\sigma \in(0,2]$, we study existence and non existence of minimizers of the following quotient: \begin{equation}\label{Paper Equation} \mu_{\lambda,\sigma}=\inf_{u \in H^1(M)\setminus \lbrace0\rbrace} \frac{\displaystyle\int_M |\nabla u|^2 dv_g -\lambda \int_M u^2 dv_g }{\biggl(\displaystyle\int_M \rho^{-\sigma} |u|^{2^*(\sigma)} dv_g\biggl)^{2/2^*(\sigma)}}, \end{equation} where $\rho(p)=dist(p,p_0)$ denoted the geodesic distance from p to $p_0$. In particular for $\sigma=2$, we provide sufficient and necessary conditions of existence of minimizers in terms of $\lambda$. For $\sigma\in (0,2)$ we prove existence of minimizers under scalar curvature pinching.