{ "id": "1504.00968", "version": "v1", "published": "2015-04-04T02:14:48.000Z", "updated": "2015-04-04T02:14:48.000Z", "title": "Hardy and Hardy-Sobolev inequalities on Riemannian manifolds", "authors": [ "El Hadji Abdoulaye Thiam" ], "categories": [ "math.AP" ], "abstract": "Let $ (M,g) $ be a smooth compact Riemannian manifold of dimension $ N \\geq 3 $ without boundary. Given $p_0 \\in M$, $\\lambda \\in \\mathcal{R}$ and $\\sigma \\in(0,2]$, we study existence and non existence of minimizers of the following quotient: \\begin{equation}\\label{Paper Equation} \\mu_{\\lambda,\\sigma}=\\inf_{u \\in H^1(M)\\setminus \\lbrace0\\rbrace} \\frac{\\displaystyle\\int_M |\\nabla u|^2 dv_g -\\lambda \\int_M u^2 dv_g }{\\biggl(\\displaystyle\\int_M \\rho^{-\\sigma} |u|^{2^*(\\sigma)} dv_g\\biggl)^{2/2^*(\\sigma)}}, \\end{equation} where $\\rho(p)=dist(p,p_0)$ denoted the geodesic distance from p to $p_0$. In particular for $\\sigma=2$, we provide sufficient and necessary conditions of existence of minimizers in terms of $\\lambda$. For $\\sigma\\in (0,2)$ we prove existence of minimizers under scalar curvature pinching.", "revisions": [ { "version": "v1", "updated": "2015-04-04T02:14:48.000Z" } ], "analyses": { "keywords": [ "hardy-sobolev inequalities", "smooth compact riemannian manifold", "minimizers", "non existence", "study existence" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150400968H" } } }