arXiv Analytics

Sign in

arXiv:1503.07926 [math.PR]AbstractReferencesReviewsResources

What is the probability that a large random matrix has no real eigenvalues?

Eugene Kanzieper, Mihail Poplavskyi, Carsten Timm, Roger Tribe, Oleg Zaboronski

Published 2015-03-26Version 1

We study the large-$n$ limit of the probability $p_{2n,2k}$ that a random $2n\times 2n$ matrix sampled from the real Ginibre ensemble has $2k$ real eigenvalues. We prove that, $$\lim_{n\rightarrow \infty}\frac {1}{\sqrt{2n}} \log p_{2n,2k}=\lim_{n\rightarrow \infty}\frac {1}{\sqrt{2n}} \log p_{2n,0}= -\frac{1}{\sqrt{2\pi}}\zeta\left(\frac{3}{2}\right),$$ where $\zeta$ is the Riemann zeta-function. Moreover, for any sequence of non-negative integers $(k_n)_{n\geq 1}$, $$\lim_{n\rightarrow \infty}\frac {1}{\sqrt{2n}} \log p_{2n,2k_n}=-\frac{1}{\sqrt{2\pi}}\zeta\left(\frac{3}{2}\right),$$ provided $\lim_{n\rightarrow \infty} \left(n^{-1/2}\log(n)\right) k_{n}=0$.

Comments: 23 pages, 1 figure
Categories: math.PR, math-ph, math.MP
Subjects: 60B20
Related articles: Most relevant | Search more
arXiv:2210.15643 [math.PR] (Published 2022-10-27)
Precise asymptotics for the spectral radius of a large random matrix
arXiv:2312.08325 [math.PR] (Published 2023-12-13)
Universality of extremal eigenvalues of large random matrices
arXiv:2411.16572 [math.PR] (Published 2024-11-25)
Optimal decay of eigenvector overlap for non-Hermitian random matrices