{ "id": "1503.07926", "version": "v1", "published": "2015-03-26T23:13:39.000Z", "updated": "2015-03-26T23:13:39.000Z", "title": "What is the probability that a large random matrix has no real eigenvalues?", "authors": [ "Eugene Kanzieper", "Mihail Poplavskyi", "Carsten Timm", "Roger Tribe", "Oleg Zaboronski" ], "comment": "23 pages, 1 figure", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We study the large-$n$ limit of the probability $p_{2n,2k}$ that a random $2n\\times 2n$ matrix sampled from the real Ginibre ensemble has $2k$ real eigenvalues. We prove that, $$\\lim_{n\\rightarrow \\infty}\\frac {1}{\\sqrt{2n}} \\log p_{2n,2k}=\\lim_{n\\rightarrow \\infty}\\frac {1}{\\sqrt{2n}} \\log p_{2n,0}= -\\frac{1}{\\sqrt{2\\pi}}\\zeta\\left(\\frac{3}{2}\\right),$$ where $\\zeta$ is the Riemann zeta-function. Moreover, for any sequence of non-negative integers $(k_n)_{n\\geq 1}$, $$\\lim_{n\\rightarrow \\infty}\\frac {1}{\\sqrt{2n}} \\log p_{2n,2k_n}=-\\frac{1}{\\sqrt{2\\pi}}\\zeta\\left(\\frac{3}{2}\\right),$$ provided $\\lim_{n\\rightarrow \\infty} \\left(n^{-1/2}\\log(n)\\right) k_{n}=0$.", "revisions": [ { "version": "v1", "updated": "2015-03-26T23:13:39.000Z" } ], "analyses": { "subjects": [ "60B20" ], "keywords": [ "large random matrix", "real eigenvalues", "probability", "riemann zeta-function", "real ginibre ensemble" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1357230 } } }