arXiv:1503.06346 [math.PR]AbstractReferencesReviewsResources
Jigsaw Percolation on Erdos-Renyi Random Graphs
Published 2015-03-21Version 1
We extend the jigsaw percolation model to analyze graphs where both underlying people and puzzle graphs are Erd\H{o}s-R\'{e}nyi random graphs. Let $p_{\text{ppl}}$ and $p_{\text{puz}}$ denote the probability that an edge exists in the respective people and puzzle graphs and define $p_{\text{eff}}= p_{\text{ppl}}p_{\text{puz}}$, the effective probability. We show for constants $c_1>1$ and $c_2> \pi^2/6$ and $c_3<e^{-5}$ if $min(p_{\text{ppl}},p_{\text{puz}}) > c_1 \log n /n$ the critical effective probability $p^c_{\text{eff}}$, satisfies $c_3 < p^c_{\text{eff}}n\log n < c_2.$
Related articles:
Local limit theorems via Landau-Kolmogorov inequalities
arXiv:0901.3246 [math.PR] (Published 2009-01-21)
Moderate deviations in random graphs and Bernoulli random matrices
arXiv:1504.07682 [math.PR] (Published 2015-04-28)
Shotgun assembly of labeled graphs