{ "id": "1503.06346", "version": "v1", "published": "2015-03-21T20:07:03.000Z", "updated": "2015-03-21T20:07:03.000Z", "title": "Jigsaw Percolation on Erdos-Renyi Random Graphs", "authors": [ "Erik Slivken" ], "categories": [ "math.PR" ], "abstract": "We extend the jigsaw percolation model to analyze graphs where both underlying people and puzzle graphs are Erd\\H{o}s-R\\'{e}nyi random graphs. Let $p_{\\text{ppl}}$ and $p_{\\text{puz}}$ denote the probability that an edge exists in the respective people and puzzle graphs and define $p_{\\text{eff}}= p_{\\text{ppl}}p_{\\text{puz}}$, the effective probability. We show for constants $c_1>1$ and $c_2> \\pi^2/6$ and $c_3 c_1 \\log n /n$ the critical effective probability $p^c_{\\text{eff}}$, satisfies $c_3 < p^c_{\\text{eff}}n\\log n < c_2.$", "revisions": [ { "version": "v1", "updated": "2015-03-21T20:07:03.000Z" } ], "analyses": { "subjects": [ "60G99" ], "keywords": [ "erdos-renyi random graphs", "puzzle graphs", "effective probability", "jigsaw percolation model", "analyze graphs" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }