arXiv:1503.03279 [math.RT]AbstractReferencesReviewsResources
On the Universal Central Extension of Hyperelliptic Current Algebras
Published 2015-03-11Version 1
Let $p(t)\in\mathbb C[t]$ be a polynomial with distinct roots and nonzero constant term. We describe, using Fa\'a de Bruno's formula and Bell polynomials, the universal central extension in terms of generators and relations for the hyperelliptic current Lie algebras $\mathfrak g\otimes R$ whose coordinate ring is of the form $R=\mathbb C[t,t^{-1},u\,|\, u^2=p(t)]$.
Categories: math.RT
Related articles: Most relevant | Search more
Realizations of the three point algebra $\mathfrak{sl}(2, \mathcal R) \oplus\left(Ω_{\mathcal R}/d{\mathcal R}\right)$
Universal central extensions of $\mathfrak{sl}(m, n, A)$ of small rank over associative superalgebras
arXiv:1205.3604 [math.RT] (Published 2012-05-16)
A new class of modules for Toroidal Lie Superalgebras