arXiv Analytics

Sign in

arXiv:1503.03279 [math.RT]AbstractReferencesReviewsResources

On the Universal Central Extension of Hyperelliptic Current Algebras

Ben Cox

Published 2015-03-11Version 1

Let $p(t)\in\mathbb C[t]$ be a polynomial with distinct roots and nonzero constant term. We describe, using Fa\'a de Bruno's formula and Bell polynomials, the universal central extension in terms of generators and relations for the hyperelliptic current Lie algebras $\mathfrak g\otimes R$ whose coordinate ring is of the form $R=\mathbb C[t,t^{-1},u\,|\, u^2=p(t)]$.

Related articles: Most relevant | Search more
arXiv:1303.6973 [math.RT] (Published 2013-03-27, updated 2015-02-22)
Realizations of the three point algebra $\mathfrak{sl}(2, \mathcal R) \oplus\left(Ω_{\mathcal R}/d{\mathcal R}\right)$
arXiv:1405.4035 [math.RT] (Published 2014-05-15, updated 2014-07-07)
Universal central extensions of $\mathfrak{sl}(m, n, A)$ of small rank over associative superalgebras
arXiv:1205.3604 [math.RT] (Published 2012-05-16)
A new class of modules for Toroidal Lie Superalgebras