arXiv:1303.6973 [math.RT]AbstractReferencesReviewsResources
Realizations of the three point algebra $\mathfrak{sl}(2, \mathcal R) \oplus\left(Ω_{\mathcal R}/d{\mathcal R}\right)$
Ben L. Cox, Elizabeth G. Jurisich
Published 2013-03-27, updated 2015-02-22Version 3
We describe the universal central extension of the three point current algebra $\mathfrak{sl}(2,\mathcal R)$ where $\mathcal R=\mathbb C[t,t^{-1},u\,|\,u^2=t^2+4t ]$ and construct realizations of it in terms of sums of partial differential operators.
Comments: arXiv admin note: text overlap with arXiv:0902.1273. This version has a correction to a scalar in Cor 2.3. The representations of the algebra are unaffected
Journal: Pacific Journal of Mathematics vol. 270, No. 1, 2014
Categories: math.RT
Keywords: point algebra, universal central extension, point current algebra, partial differential operators, construct realizations
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1503.03279 [math.RT] (Published 2015-03-11)
On the Universal Central Extension of Hyperelliptic Current Algebras
Universal central extensions of $\mathfrak{sl}(m, n, A)$ of small rank over associative superalgebras
arXiv:1205.3604 [math.RT] (Published 2012-05-16)
A new class of modules for Toroidal Lie Superalgebras