arXiv Analytics

Sign in

arXiv:1503.01264 [math.AG]AbstractReferencesReviewsResources

Semiample perturbations for log canonical varieties over an F-finite field containing an infinite perfect field

Hiromu Tanaka

Published 2015-03-04Version 1

Let $k$ be an $F$-finite field containing an infinite perfect field of positive characteristic. Let $(X, \Delta)$ be a projective log canonical pair over $k$. In this note we show that, for a semi-ample divisor $D$ on $X$, there exists an effective $\mathbb{Q}$-divisor $\Delta' \sim_{\mathbb Q} \Delta+D$ such that $(X, \Delta')$ is log canonical if there exists a log resolution of $(X, \Delta)$.

Related articles: Most relevant | Search more
arXiv:1210.0421 [math.AG] (Published 2012-10-01, updated 2013-05-06)
Bogomolov-Sommese vanishing on log canonical pairs
arXiv:1801.00739 [math.AG] (Published 2018-01-02)
Log canonical pairs over varieties with maximal Albanese dimension
arXiv:0912.3311 [math.AG] (Published 2009-12-17, updated 2011-02-01)
A Bound for the Castelnuovo-Mumford Regularity of Log Canonical Varieties