arXiv:1503.01264 [math.AG]AbstractReferencesReviewsResources
Semiample perturbations for log canonical varieties over an F-finite field containing an infinite perfect field
Published 2015-03-04Version 1
Let $k$ be an $F$-finite field containing an infinite perfect field of positive characteristic. Let $(X, \Delta)$ be a projective log canonical pair over $k$. In this note we show that, for a semi-ample divisor $D$ on $X$, there exists an effective $\mathbb{Q}$-divisor $\Delta' \sim_{\mathbb Q} \Delta+D$ such that $(X, \Delta')$ is log canonical if there exists a log resolution of $(X, \Delta)$.
Comments: 11 pages
Categories: math.AG
Related articles: Most relevant | Search more
Bogomolov-Sommese vanishing on log canonical pairs
arXiv:1801.00739 [math.AG] (Published 2018-01-02)
Log canonical pairs over varieties with maximal Albanese dimension
A Bound for the Castelnuovo-Mumford Regularity of Log Canonical Varieties