{ "id": "1503.01264", "version": "v1", "published": "2015-03-04T09:52:11.000Z", "updated": "2015-03-04T09:52:11.000Z", "title": "Semiample perturbations for log canonical varieties over an F-finite field containing an infinite perfect field", "authors": [ "Hiromu Tanaka" ], "comment": "11 pages", "categories": [ "math.AG" ], "abstract": "Let $k$ be an $F$-finite field containing an infinite perfect field of positive characteristic. Let $(X, \\Delta)$ be a projective log canonical pair over $k$. In this note we show that, for a semi-ample divisor $D$ on $X$, there exists an effective $\\mathbb{Q}$-divisor $\\Delta' \\sim_{\\mathbb Q} \\Delta+D$ such that $(X, \\Delta')$ is log canonical if there exists a log resolution of $(X, \\Delta)$.", "revisions": [ { "version": "v1", "updated": "2015-03-04T09:52:11.000Z" } ], "analyses": { "keywords": [ "infinite perfect field", "log canonical varieties", "f-finite field containing", "semiample perturbations", "log canonical pair" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150301264T" } } }