arXiv:1502.06352 [math.GT]AbstractReferencesReviewsResources
On the Morse-Novikov number for 2-knots
Published 2015-02-23Version 1
Let $K\subset S^4$ be a 2-knot, that is, a smoothly embedded 2-sphere in $S^4$. The Morse-Novikov number $\mathcal M\mathcal N(K)$ is the minimal possible number of critical points of a Morse map $S^4\setminus K\to S^1$ belonging to the canonical class in $H^1(S^4\setminus K)$. We prove that for a classical knot $K\subset S^3$ the Morse-Novikov number of the spun knot $S(K)$ is $\leq 2\mathcal M\mathcal N(K)$. This enables us to compute $\mathcal M\mathcal N(S(K))$ for every classical knot $K$ with tunnel number 1.
Comments: Latex, 14 pages
Related articles: Most relevant | Search more
On the tunnel number and the Morse-Novikov number of knots
arXiv:1605.04532 [math.GT] (Published 2016-05-15)
Circle-valued Morse theory for frame spun knots and surface-links
arXiv:1908.01693 [math.GT] (Published 2019-08-05)
The tunnel number of all 11 and 12 crossing alternating knots