{ "id": "1502.06352", "version": "v1", "published": "2015-02-23T09:05:02.000Z", "updated": "2015-02-23T09:05:02.000Z", "title": "On the Morse-Novikov number for 2-knots", "authors": [ "Hisaaki Endo", "Andrei Pajitnov" ], "comment": "Latex, 14 pages", "categories": [ "math.GT", "math.AT" ], "abstract": "Let $K\\subset S^4$ be a 2-knot, that is, a smoothly embedded 2-sphere in $S^4$. The Morse-Novikov number $\\mathcal M\\mathcal N(K)$ is the minimal possible number of critical points of a Morse map $S^4\\setminus K\\to S^1$ belonging to the canonical class in $H^1(S^4\\setminus K)$. We prove that for a classical knot $K\\subset S^3$ the Morse-Novikov number of the spun knot $S(K)$ is $\\leq 2\\mathcal M\\mathcal N(K)$. This enables us to compute $\\mathcal M\\mathcal N(S(K))$ for every classical knot $K$ with tunnel number 1.", "revisions": [ { "version": "v1", "updated": "2015-02-23T09:05:02.000Z" } ], "analyses": { "subjects": [ "57Q45", "57M25", "57R35", "57R70", "57R45" ], "keywords": [ "morse-novikov number", "classical knot", "spun knot", "tunnel number" ], "note": { "typesetting": "LaTeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }