arXiv:1502.02349 [math.RT]AbstractReferencesReviewsResources
Relative Singularity Categories
Published 2015-02-09Version 1
We study the properties of the relative derived category $D_{\mathscr{C}}^{b}$($\mathscr{A}$) of an abelian category $\mathscr{A}$ relative to a full and additive subcategory $\mathscr{C}$. In particular, when $\mathscr{A}=A{\text -}\mod$ for a finite-dimensional algebra $A$ over a field and $\mathscr{C}$ is a contravariantly finite subcategory of $A$-$\mod$ which is admissible and closed under direct summands, the $\mathscr{C}$-singularity category $D_{\mathscr{C}{\text sg}}$($\mathscr{A}$)=$D_{\mathscr{C}}^{b}$($\mathscr{A}$)/$K^{b}(\mathscr{C})$ is studied. We give a sufficient condition when this category is triangulated equivalent to the stable category of the Gorenstein category $\mathscr{G}(\mathscr{C})$ of $\mathscr{C}$.