arXiv Analytics

Sign in

arXiv:1207.6941 [math.RT]AbstractReferencesReviewsResources

Singularity categories of gentle algebras

Martin Kalck

Published 2012-07-30, updated 2014-10-21Version 3

We determine the singularity category of an arbitrary finite dimensional gentle algebra $\Lambda$. It is a finite product of $n$-cluster categories of type $\mathbb{A}_{1}$. Equivalently, it may be described as the stable module category of a selfinjective gentle algebra. If $\Lambda$ is a Jacobian algebra arising from a triangulation $\ct$ of an unpunctured marked Riemann surface, then the number of factors equals the number of inner triangles of $\ct$.

Comments: 11 pages; minor changes, final version, to appear Bulletin of the LMS
Categories: math.RT, math.RA
Subjects: 18E30, 16G20
Related articles: Most relevant | Search more
arXiv:1805.04041 [math.RT] (Published 2018-05-10)
Skew group algebras of Jacobian algebras
arXiv:1404.2451 [math.RT] (Published 2014-04-09)
The singularity category of a Nakayama algebra
arXiv:0706.3638 [math.RT] (Published 2007-06-25)
Singularity categories, Schur Functors and Triangular Matrix Rings