{ "id": "1207.6941", "version": "v3", "published": "2012-07-30T14:00:26.000Z", "updated": "2014-10-21T16:06:56.000Z", "title": "Singularity categories of gentle algebras", "authors": [ "Martin Kalck" ], "comment": "11 pages; minor changes, final version, to appear Bulletin of the LMS", "categories": [ "math.RT", "math.RA" ], "abstract": "We determine the singularity category of an arbitrary finite dimensional gentle algebra $\\Lambda$. It is a finite product of $n$-cluster categories of type $\\mathbb{A}_{1}$. Equivalently, it may be described as the stable module category of a selfinjective gentle algebra. If $\\Lambda$ is a Jacobian algebra arising from a triangulation $\\ct$ of an unpunctured marked Riemann surface, then the number of factors equals the number of inner triangles of $\\ct$.", "revisions": [ { "version": "v2", "updated": "2013-05-16T16:12:55.000Z", "abstract": "We determine the singularity category of an arbitrary finite dimensional gentle algebra $\\Lambda$. It is a finite product of $n$-cluster categories of type $\\mathbb{A}_{1}$. If $\\Lambda$ is a Jacobian algebra arising from a triangulation $\\ct$ of an unpunctured marked Riemann surface, then the number of factors equals the number of inner triangles of $\\ct$.", "comment": "10 pages; major changes: corrected a wrong argument in Subsection 4.1 - the results hold without changes; corollary on derived invariants added; added some examples and remarks; exposition clarified; introduction extended", "journal": null, "doi": null }, { "version": "v3", "updated": "2014-10-21T16:06:56.000Z" } ], "analyses": { "subjects": [ "18E30", "16G20" ], "keywords": [ "singularity category", "arbitrary finite dimensional gentle algebra", "inner triangles", "finite product", "jacobian algebra" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1207.6941K" } } }