arXiv:1502.02217 [math.PR]AbstractReferencesReviewsResources
Bifractional Brownian motion: existence and border cases
Mikhail Lifshits, Ksenia Volkova
Published 2015-02-08Version 1
Bifractional Brownian motion (bfBm) is a centered Gaussian process with covariance \[ R^{(H,K)}(s,t)= 2^{-K} \left( \left(|s|^{2H}+|t|^{2H} \right)^{K}-|t-s|^{2HK}\right), \qquad s,t\in R. \] We study the existence of bfBm for a given pair of parameters $(H,K)$ and encounter some related limiting processes.
Categories: math.PR
Related articles: Most relevant | Search more
arXiv:1902.09633 [math.PR] (Published 2019-02-25)
Bifractional Brownian motion for $H>1$ and $2HK\le 1$
An extension of bifractional Brownian motion
arXiv:1105.4214 [math.PR] (Published 2011-05-21)
An Inequality Related to Bifractional Brownian Motion