{ "id": "1502.02217", "version": "v1", "published": "2015-02-08T06:25:42.000Z", "updated": "2015-02-08T06:25:42.000Z", "title": "Bifractional Brownian motion: existence and border cases", "authors": [ "Mikhail Lifshits", "Ksenia Volkova" ], "categories": [ "math.PR" ], "abstract": "Bifractional Brownian motion (bfBm) is a centered Gaussian process with covariance \\[ R^{(H,K)}(s,t)= 2^{-K} \\left( \\left(|s|^{2H}+|t|^{2H} \\right)^{K}-|t-s|^{2HK}\\right), \\qquad s,t\\in R. \\] We study the existence of bfBm for a given pair of parameters $(H,K)$ and encounter some related limiting processes.", "revisions": [ { "version": "v1", "updated": "2015-02-08T06:25:42.000Z" } ], "analyses": { "subjects": [ "60G15", "42A82" ], "keywords": [ "bifractional brownian motion", "border cases", "centered gaussian process", "covariance", "parameters" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150202217L" } } }