arXiv Analytics

Sign in

arXiv:1501.02446 [math.NT]AbstractReferencesReviewsResources

Categories of abelian varieties over finite fields I. Abelian varieties over $\mathbb{F}_p$

Tommaso Giorgio Centeleghe, Jakob Stix

Published 2015-01-11Version 1

We assign functorially a $\mathbb{Z}$-lattice with semisimple Frobenius action to each abelian variety over $\mathbb{F}_p$. This establishes an equivalence of categories that describes abelian varieties over $\mathbb{F}_p$ avoiding $\sqrt{p}$ as an eigenvalue of Frobenius in terms of simple commutative algebra. The result extends the isomorphism classification of Waterhouse and Deligne's equivalence for ordinary abelian varieties.

Comments: Accepted for publication in Algebra & Number Theory
Categories: math.NT, math.AG
Subjects: 11G10, 14K10
Related articles: Most relevant | Search more
arXiv:math/9911218 [math.NT] (Published 1999-11-27)
The Tate Conjecture for Certain Abelian Varieties over Finite Fields
arXiv:1110.0255 [math.NT] (Published 2011-10-03, updated 2012-03-30)
Determinants of Subquotients of Galois Representations Associated to Abelian Varieties
arXiv:math/0605444 [math.NT] (Published 2006-05-16, updated 2006-06-01)
Abelian Varieties over Cyclic Fields