{ "id": "1501.02446", "version": "v1", "published": "2015-01-11T11:24:10.000Z", "updated": "2015-01-11T11:24:10.000Z", "title": "Categories of abelian varieties over finite fields I. Abelian varieties over $\\mathbb{F}_p$", "authors": [ "Tommaso Giorgio Centeleghe", "Jakob Stix" ], "comment": "Accepted for publication in Algebra & Number Theory", "categories": [ "math.NT", "math.AG" ], "abstract": "We assign functorially a $\\mathbb{Z}$-lattice with semisimple Frobenius action to each abelian variety over $\\mathbb{F}_p$. This establishes an equivalence of categories that describes abelian varieties over $\\mathbb{F}_p$ avoiding $\\sqrt{p}$ as an eigenvalue of Frobenius in terms of simple commutative algebra. The result extends the isomorphism classification of Waterhouse and Deligne's equivalence for ordinary abelian varieties.", "revisions": [ { "version": "v1", "updated": "2015-01-11T11:24:10.000Z" } ], "analyses": { "subjects": [ "11G10", "14K10" ], "keywords": [ "abelian variety", "finite fields", "categories", "ordinary abelian varieties", "semisimple frobenius action" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }