arXiv Analytics

Sign in

arXiv:1501.00698 [math.PR]AbstractReferencesReviewsResources

Maximal inequalities for centered norms of sums of independent random vectors

Rafał Latała

Published 2015-01-04Version 1

Let $X_1,X_2,\ldots,X_n$ be independent random variables and $S_k=\sum_{i=1}^k X_i$. We show that for any constants $a_k$, \[ \Pr(\max_{1\leq k\leq n}||S_{k}|-a_{k}|>11t)\leq 30 \max_{1\leq k\leq n}\Pr(||S_{k}|-a_{k}|>t). \] We also discuss similar inequalities for sums of Hilbert and Banach space valued random vectors.

Comments: 9 pages
Journal: High Dimensional Probability VI, The Banff Volume, Progr. Probab. 66, 63-71, Birkhauser 2013
Categories: math.PR
Subjects: 60E15
Related articles: Most relevant | Search more
arXiv:1305.4406 [math.PR] (Published 2013-05-19)
$L_1$-norm of combinations of products of independent random variables
arXiv:math/0503651 [math.PR] (Published 2005-03-29)
Moment inequalities for functions of independent random variables
arXiv:1404.0344 [math.PR] (Published 2014-04-01, updated 2015-01-04)
Two-sided bounds for $L_p$-norms of combinations of products of independent random variables